\qquad Date: \qquad

Chapter 4 - Problem Solving in Chemistry

Chapter 4: $1-5,7,9-17,19,22-24,26-29,33,34,38,40,51,52,56,70$ (30 total)

Practice Problems

1. The density of silicon is $2.33 \mathrm{~g} / \mathrm{cm}^{3}$. What is the volume of a piece of silicon that has a mass of 62.9 g ?
2. Helium has a boiling point of 4 K . This is the lowest boiling point of any liquid. Express this temperature in degrees Celsius.

Section Review 4.1

3. List three useful problem-solving skills.
a.
b.
c.
4. State in your own words the three suggested step for solving word problems.
a.
b.
c.
5. Identify the statements that correctly complete the sentence: Good problem solvers
a. read a problem only once.
b. check their work.
c. break complex problems down into one or more simpler problems.
d. look for relationships among pieces of information.
6. Calculate normal body temperature $\left(37^{\circ} \mathrm{C}\right)$ on the Kelvin scale.

Practice Problems

9. An experiment requires that each student use an $8.5-\mathrm{cm}$ length of magnesium ribbon. How many students can perform the experiment if there is a $570-\mathrm{cm}$ length of magnesium ribbon available?
10. A 1.00 -degree increase on the Celsius scale is equivalent to a 1.80 -degree increase on the Fahrenheit scale. If a temperature increases by $48.0^{\circ} \mathrm{C}$, what is the corresponding temperature increase on the Fahrenheit scale?

Practice Problems

11. Using tables from Chapter 3, convert the following.
a. 0.044 km to meters
b. 4.6 mg to grams
c. 8.9 m to decimeters
d. 0.107 g to centigrams
12. Convert the following.
a. $15 \mathrm{~cm}^{3}$ to liters
b. 7.38 g to kilograms
c. 0.67 s to milliseconds
d. 94.5 g to micrograms

Practice Problems

13. Use dimensional analysis and the given densities to make the following conversions.
a. 14.8 g of boron to cubic centimeters of boron. The density of boron is $2.34 \mathrm{~g} / \mathrm{cm}^{3}$.
b. 2.8 L of argon to grams of argon. The density of argon is $1.78 \mathrm{~g} / \mathrm{L}$
c. 4.62 g of mercury to cubic centimeters of mercury. The density of mercury is $13.5 \mathrm{~g} /$ cm^{3}.

Practice Problems

14. Rework the preceding problems by applying the equation:

Density $=$ mass/ volume

Section Review 4.2

15. What conversion factor would you use to convert between these pairs of units?
a. minutes to hours
b. grams of water to cubic centimeters of water
c. grams to milligrams
d. cubic decimeters to milliliters
16. Make the following conversions. Express your answers in scientific notation.
a. 36 cm to meters
b. 14.8 g to micrograms
c. 1.44 kL to liters
17. (continued)
d. 68.9 m to decimeters
e. $3.72 \times 10^{-3} \mathrm{~kg}$ to grams
f. 66.3 L to cubic centimeters
g. 0.0371 m to kilometers
18. A $2.00-\mathrm{kg}$ sample of bituminous coal is composed of 1.30 kg of carbon, 0.20 kg of ash, 0.15 kg of water, and 0.35 kg of volatile (gas-forming) material. Using this information, determine how many kilograms of carbon are in 125 kg of this coal.
19. An atom of gold has a mass of $3.271 \times 10^{-22} \mathrm{~g}$. How many atoms of gold are in 5.00 g of gold?

Practice Problems

22. How many minutes are there in exactly one week?
23. How many seconds are there in exactly a 40 hour work week?

Practice Problems

24. Gold has a density of $19.3 \mathrm{~g} / \mathrm{cm}^{3}$. What is the density in kilograms per cubic meter?

Section Review 4.3

26. How can you solve a complicated problem more easily?
27. How are complex units dealt with in calculations?
28. Convert the following. Express your answers in scientific notation.
a. $7.5 \times 10^{4} \mathrm{~nm}$ to kilometers
b. $3.9 \times 10^{5} \mathrm{mg}$ to decigrams
c. 0.764 km to centimeters
d. $2.21 \times 10^{-4} \mathrm{dL}$ to microliters
29. Light travels at a speed of $3.00 \times 10^{10} \mathrm{~cm} / \mathrm{s}$. What is the speed of light in kilometers per hour?

Chapter 4 Review

33. A volume of 5.00 mL of mercury is added to a beaker that has a mass of 87.3 g . What is the mass of the beaker with the added mercury? 4.1
34. What is the name given to a ratio of two equivalent measurements? 4.2
35. One of the first mixtures of metal used by dentists for tooth fillings consisted of 26.0 g of silver, 10.8 g of tin, 2.4 g of copper, and 0.8 g of zinc. How much silver is in a 25.0 g sample of this amalgam? 4.2
36. The density of dry air measured at $25^{\circ} \mathrm{C}$ is $1.19 \times 10^{-3} \mathrm{~g} / \mathrm{cm}^{3}$. What is the volume of 50.0 g of air? 4.2
37. Alkanes are a class of molecules that have the general formula $\mathrm{C}_{\mathrm{n}} \mathrm{H}_{2 \mathrm{n}+2}$, where n in an integer. The table below gives the boiling points for the first five alkanes with an odd number of carbon atoms. Using the table, construct a graph with number of carbon atoms on the x -axis.

Boiling Point (${ }^{\circ}$ C	Number of carbon atoms
-162.0	1
-42.0	3
36.0	5
98.0	7
151.0	9

a. what are the approximate boiling points for the $\mathrm{C}_{2}, \mathrm{C}_{4}, \mathrm{C}_{6}$, and C_{8} alkanes?
b. Which of these nine alkanes are gases at room temperature $\left(20^{\circ} \mathrm{C}\right)$?
c. How many of these nine alkanes are liquids at 350 K ?
d. What is the approximate increase in boiling point per additional carbon atom in this series of alkanes?
52. Earth is approximately $1.5 \times 10^{8} \mathrm{~km}$ from the sun. How many minutes does it take light to travel from the sun to Earth? The speed of light is $3.00 \times 10^{8} \mathrm{~m} / \mathrm{s}$.
56. Choose the term that best completes the second relationship.
a. journey: route
(1) unknown
(3) known
(2) plan
(4) calculate
b. meter: 100 cm
(1) 0.001 kL
(3) 1000 mg
(2) 100 cm
(4) 100 kg
70. The density of dry air at $20^{\circ} \mathrm{C}$ is $1.20 \mathrm{~g} / \mathrm{L}$. What is the mass of air, in kilograms, of a room that measures 25.0 m by 15.0 m by 4.0 m ?

