Chapter 8 – Chemical Reactions

Chapter 8: 1 - 7, 9 - 18, 20, 21, 24 - 26, 29 - 31, 46, 55, 69

Practice Problems

- 1. Write a skeleton equation for each chemical reaction. Include the appropriate symbols from Table 8.1 on page 206.
 - a. Sulfur burns in oxygen to form sulfur dioxide.
 - b. Heating potassium chlorate in the presence of the catalyst manganese dioxide produces oxygen gas. Potassium chloride is left as a solid.
- 2. Write a sentence that describes each chemical reaction.

a.
$$KOH(aq) + H_2SO_4(aq) \rightarrow H_2O(l) + K_2SO_4(aq)$$

b.
$$Na(s) + H_2O(l) \rightarrow NaOH(aq) + H_2(g)$$

3. Balance each equation, using the rules for balancing equations provided on pages 208, 209.

a.
$$_$$
 AgNO₃ + $_$ H₂S \rightarrow $_$ Ag₂S + $_$ HNO₃

b.
$$_$$
 MnO₂ + $_$ HCl \rightarrow $_$ MnCl₂ + $_$ H₂O + $_$ Cl₂

c. _ Zn(OH)₂ + _ H₃PO₄
$$\rightarrow$$
 _ Zn₃(PO₄)₂ + _ H₂O

- 4. Rewrite these word equations as balanced chemical equations.
 - a. hydrogen + sulfur → hydrogen sulfide
 - b. iron(III) chloride + calcium hydroxide \rightarrow iron(III) hydroxide + calcium chloride

5. Balance the equation. $_$ CO + $_$ Fe₂O₃ \rightarrow $_$ Fe + $_$ CO₂

6. Write the balanced chemical equation for the reaction of carbon with oxygen to form carbon monoxide.

7. Balance each equation.

a.
$$_$$
 FeCl₃ + $_$ NaOH \rightarrow $_$ Fe(OH)₃ + $_$ NaCl

b.
$$_CS_2 + _Cl_2 \rightarrow _CCl_4 + _S_2Cl_2$$

c.
$$_$$
 CH₄ + $_$ Br₂ \rightarrow CH₃Br + $_$ HBr

Section Review 8.1

- 9. Write out chemical equations for the following chemical reactions.
 - a. Pure copper can be produced by heating copper(II) sulfide in the presence of diatomic oxygen from the air. Sulfur dioxide gas is also produced in this reaction.
 - b. Water is formed by the explosive reaction between hydrogen gas and oxygen gas.
 - c. When baking soda (sodium hydrogen carbonate) is heated, it decomposes, forming the products sodium carbonate, carbon dioxide, and water.
- 10. Balance the following equations.

a.
$$__SO_2 + __O_2 \rightarrow __SO_3$$

b. _ Fe₂O₃ + _ H₂
$$\rightarrow$$
 _ Fe + _ H₂O

c. _ P + _
$$O_2 \rightarrow$$
 _ P_4O_{10}

$$d. _Al + _N_2 \rightarrow _AlN$$

- 11. Write formulas and other symbols for these substances.
 - a. sulfur trioxide gas
 - b. potassium nitrate dissolved in water
 - c. heat supplied to a chemical reaction
 - d. metallic copper
 - e. liquid mercury
 - f. zinc chloride as a catalyst
- 12. How is the law of conservation of mass related to the balancing of a chemical equation?

Practice Problems

13. Complete and balance these combination reactions.

a. __ Be + __
$$O_2 \rightarrow$$

b.
$$_SO_2 + _H_2O \rightarrow$$

- 14. Write and balance an equation for the formation of each compound from its elements.
 - a. strontium iodide (SrI₂)
 - b. magnesium nitride (Mg₃N₂)
- 15. Complete and balance these decomposition reactions.

a.
$$HI \rightarrow$$

b.
$$\underline{\hspace{1cm}}$$
 Mg(ClO₃)₂ \rightarrow $\underline{\hspace{1cm}}$ MgCl₂ +

16. Write the formula for the binary compound that decomposes to each set of products.

$$\rightarrow$$
 _ H_2 + _ Br_2

$$\rightarrow$$
 Na + Cl₂

17. Complete the equations for these single-replacement reactions that take place in aqueous solution. If a reaction does not occur (use the activity series on Table 8.2, p. 217), write "no reaction."

a.
$$_$$
 Fe(s) + $_$ Pb(NO₃)₂ (aq) \rightarrow

b.
$$_$$
 Cl₂(g) + $_$ NaI(aq) \rightarrow

c.
$$\underline{\hspace{1cm}}$$
 Ca(s) + $\underline{\hspace{1cm}}$ H₂O(l) \rightarrow

18. Write the products for these double-replacement reactions. Then balance each equation.

a.
$$_$$
 NaOH + $_$ Fe(NO₃)₃ \rightarrow

(Iron hydroxide is a precipitate)

b.
$$\underline{\hspace{0.5cm}}$$
 Ba(NO₃)₂ + $\underline{\hspace{0.5cm}}$ H₃PO₄ \rightarrow

(Barium phosphate is a precipitate.)

- 20. Write a balanced equation for the complete combustion of each compound.
 - a. formic acid (HCOOH)
 - b. heptane (C_7H_{16})
- 21. Write a balanced equation for the complete combustion of glucose ($C_6H_{12}O_6$).
- 24. What three types of products drive double-replacement reactions?
- 25. Write balanced net ionic equations for each reaction.

$$a. \; Pb(ClO_4)_2(aq) + NaI(aq) \rightarrow PbI_2(s) + NaClO_4(aq)$$

b.
$$Zn(s) + HCl(aq) \rightarrow ZnCl_2(aq) + H_2(g)$$

c.
$$Ca(OH)_2(aq) + H_3PO_4(aq) \rightarrow Ca_3(PO_4)_2(aq) + H_2O(1)$$

26. Identify the precipitate formed when solutions of these ionic compounds are mixed. Write a net ionic equation.

$$NH_4Cl(aq) + Pb(NO_3)_2(aq) \rightarrow$$

Section Review 8.3

29. Write a net ionic equation for each reaction.

a.
$$HCl(aq) + AgNO_3(aq) \rightarrow$$

b.
$$Pb(C_2H_3O_2)_2(aq) + LiCl(aq) \rightarrow$$

c.
$$Na_3PO_4(aq) + CrCl_3(aq) \rightarrow$$

30. Identify the spectator ions in each reaction in Problem 29.

- a.
- b.
- c.

31. Identify the precipitate formed when solutions of these ionic compounds are mixed.

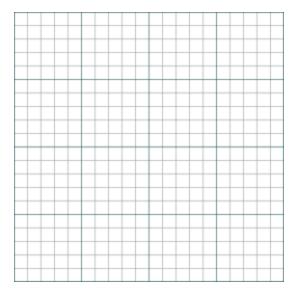
a.
$$H_2SO_4 + BaCl_2 \rightarrow$$

b.
$$Al_2(SO_4)_3 + NH_4OH \rightarrow$$

c.
$$AgNO_3 + H_2S \rightarrow$$

d.
$$CaCl_2 + Pb(NO_3)_2 \rightarrow$$

e.
$$Ca(NO_3)_2 + NaCO_3 \rightarrow$$


Chapter 8 Review

46. For each of the following pairs, predict which element as an atom would displace the other element as an ion from a compound in aqueous solution.

- a. iron and sodium
- b. silver and copper
- c. zinc and hydrogen (in HCl)

- 55. Write a balanced chemical equation for each reaction. Use the necessary symbols from Table 8.1 to describe the reaction completely.
 - a. Bubbling chlorine gas through a solution of potassium iodide gives elemental iodine and a solution of potassium chloride.
 - b. Bubbles of hydrogen gas and aqueous iron(III) chloride are produced when metallic iron is dropped into hydrochloric acid.
 - c. Solid tetraphosphorus decoxide reacts with water to produce phosphoric acid.
 - d. Solid silver oxide can be heated to give silver and oxygen gas.
 - e. Iodine crystals react with chlorine gas to form solid iodine trichloride.
 - f. Mercury metal is produced by heating a mixture of mercury(II) sulfide and calcium oxide. Additional products are calcium sulfide and calcium sulfate.
- 69. The white solid calcium chloride ($CaCl_2$) is used as a drying agent. The maximum amount of water absorbed by different quantities of $CaCl_2$ is given in the table below.

CaCl ₂ (g)	CaCl ₂ (mol)	$H_2O(g)$	H ₂ O (mol)
17.3		5.62	
48.8		15.8	
124		40.3	
337		109	

- a. Complete the table.
- b. Plot the moles of water absorbed (y-axis) versus the moles of $CaCl_2$.
- c. Based on your graph, how many molecules of water does each formula unit of CaCl₂ absorb?

Veritas – Chemistry 6